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Lattice configurations in spin-1 Bose–Einstein condensates with the
SU(3) spin–orbit coupling∗
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We consider the SU(3) spin–orbit coupled spin-1 Bose–Einstein condensates in a two-dimensional harmonic trap.
The competition between the SU(3) spin–orbit coupling and the spin-exchange interaction results in a rich variety of lattice
configurations. The ground-state phase diagram spanned by the isotropic SU(3) spin–orbit coupling and the spin–spin
interaction is presented. Five ground-state phases can be identified on the phase diagram, including the plane wave phase,
the stripe phase, the kagome lattice phase, the stripe-honeycomb lattice phase, and the honeycomb hexagonal lattice phase.
The system undergoes a sequence of phase transitions from the rectangular lattice phase to the honeycomb hexagonal lattice
phase, and to the triangular lattice phase in spin-1 Bose–Einstein condensates with anisotrpic SU(3) spin–orbit coupling.
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1. Introduction
The experimental realization of the artificial Abelian or

non-Abelian gauge potential in neutral atoms[1,2] gives rise to
the spin–orbit coupling (SOC) effect in the ultracold atoms.
The one-dimensional (1D) and two-dimensional (2D) SOC
effects have been experimentally realized in Bose–Einstein
condensates (BECs) or ultracold Fermi gases.[3–8] It is well-
known that the plane wave phase, the stripe phase, and the
meron with dipole–dipole repulsion[9–13] can be generated in
spin–orbit coupled spin-1/2 BECs depending on the relative
magnitude of intraspecies and interspecies interactions. The
realization of SOC in experiment also brings a completely new
avenue for the study of the many-body dynamics of the spin–
orbit coupled BECs. The dark and bright solitons, quantized
vortices dynamics, and Josephson dynamics are also studied
in spin–orbit coupled spin-1/2 BECs.[14–20]

In the spinor BECs, the complex atomic interactions give
rise to many exotic ground states. For the spin-1 BECs, the
mean-field ground state is a polar state with repulsive spin–
spin interaction (such as 23Na) and ferromagnetic state with at-
tractive spin–spin interaction (such as 87Rb).[21] For the spin-2
BECs, due to the density–density, spin–spin, and spin–singlet
pair terms, the mean-field ground state exhibits a rich phase
diagram mainly comprised of the ferromagnetic, uniaxial ne-
matic (UN), biaxial nematic (BN), and cyclic states.[22–24]

The spin–orbit coupled BECs with spin larger than 1/2 also
have been studied in theory and experiment.[8,25] Recently, the
spin–orbit coupled spinor BECs have been attained through
Raman coupling among the hyperfine states or the gradient

magnetic field in experiment,[26,27] which provides an interest-
ing avenue to explore the high-spin systems with the SOC ef-
fect. The exotic ground states, phase transitions, spin squeez-
ing, and solitons are revealed in the spin–orbit coupled spin-1
BECs.[28–38] The square lattice phase, triangular lattice phase,
and vector solitons are found in the spin–orbit coupled spin-
2 BECs.[39–44] In the spin–orbit coupled spin-1 BECs, most
researches restricted on the SU(2) type SOC, i.e., the internal
states are coupled to their momenta via the SU(2) Pauli ma-
trices. However, the SU(2) spin matrices cannot couple the
internal states |1〉 and |− 1〉 in the spin-1 BECs directly. The
SU(3) SOC with the spin operator spanned by the Gell–Mann
matrices can completely describe the internal couplings of the
spin–orbit coupled spin-1 Bose gases. The spiral spin textures,
the double-quantum spin vortices, solitons, and threefold-
degenerate plane wave with nontrivial spin textures were pre-
dicted in the SU(3) spin–orbit coupled Bose gases.[45–49]

In this paper, we investigate the ground-state phases of
isotropic and anisotropic SU(3) spin–orbit coupled spin-1
BECs in a 2D harmonic trap respectively. The competition
between the SU(3) SOC and the spin–spin interaction results
in a rich variety of lattice configurations. The ground-state
phase diagram spanned by the isotropic SU(3) SOC and the
spin–spin interaction is presented. Five ground-state phases
can be identified on the phase diagram, including the plane
wave (PW) phase, the stripe (ST) phase, the kagome lattice
(KL) phase, the stripe-honeycomb lattice (SHL) phase, and
the honeycomb hexagonal lattice (HHL) phase. The system
undergoes a sequence of phase transitions from the rectangu-
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lar lattice (RL) phase to the HHL phase, and to the triangular
lattice (TL) phase in the spin-1 BECs with anisotrpic SU(3)
SOC.

The paper is organized as follows. In Section 2, we intro-
duce the model of 2D SU(3) spin–orbit coupled spin-1 BECs
in a harmonic trap. In Section 3, we display the ground-
state phases of 2D spin-1 BECs with isotropic and anisotropic
SU(3) SOCs, respectively. The PW phase, the ST phase,
the KL phase, the SHL phase, and the HHL phase are found
with isotropic SU(3) SOC in Subsection 3.1. The RL phase,
the HHL phase, and the TL phase are found with anisotropic
SU(3) SOC in Subsection 3.2. A summary is included in Sec-
tion 4.

2. Model and Hamiltonian
We study the ground-state phases of the SU(3) spin–orbit

coupled spin-1 BECs in a 2D harmonic trap. The expectation
value of the Hamiltonian is given as

E[Ψ ]≡ 〈Ĥ〉=
∫

d𝑟Ψ
∗
j

{(
− h̄2

2m
∇

2 +V (𝑟)+υsoc

)
Ψj

+
1
2

c0n2 +
1
2

c2|𝐹 |2
}
,

(1)

where Ψj ( j = 0,±1) is the spinor wave function of the
atoms condensed in the spin state |F = 1, mF = j〉, m
is the atomic mass, and 𝑟 = (x,y). The atom density is
n = ∑ j=1,0,−1Ψ ∗j (𝑟)Ψj(𝑟) and the total atom density is N =∫

n(𝑟)d𝑟. The spin density vector 𝐹 = (Fx,Fy,Fz) is ex-
pressed as[50] Fx =

1√
2
[Ψ ∗1 Ψ0 +Ψ ∗0 (Ψ1 +Ψ−1)+Ψ ∗−1Ψ0],Fy =

i√
2
[−Ψ ∗1 Ψ0 + Ψ ∗0 (Ψ1 −Ψ−1) + Ψ ∗−1Ψ0], and Fz = |Ψ1|2 −

|Ψ−1|2. The density–density interaction c0 = 4
3 h̄2

π(2a2 +

a0)/m and the spin–spin interaction c2 = 4
3 h̄2

π(a2 − a0)/m
are given in terms of the s-wave scattering length a0 and a2

for atoms with total spins 0 and 2, respectively. The SU(3)
SOC υsoc = γxλxkx + γyλyky, where kx (ky) and γx (γy) are the
momentum and the SOC strength along the x (y) direction, re-
spectively. The SU(3) spin matrices (λx,λy) can be expressed
by the generator of the SU(3) group, i.e. the Gell–Mann ma-
trices. Here

λx =

 0 1 1
1 0 1
1 1 0

, λy =

 0 −i i
i 0 −i
−i i 0

. (2)

The time evolution of the mean field is governed by

ih̄
∂Ψj

∂ t
=

δE
δΨ ∗j

. (3)

We can obtain three coupled time-dependent Gross–Pitaevskii
(GP) equations by substituting Eq. (1) into Eq. (3),

ih̄
∂Ψ−1

∂ t
=

(
− h̄2

2m
∇

2 +V (𝑟)

)
Ψ−1 +(c0n− c2Fz)Ψ−1

+
c2√

2
F+Ψ0− h̄

(
γy

∂

∂y
+ ih̄x

∂

∂x

)
Ψ0

+ h̄
(

γy
∂

∂y
− ih̄x

∂

∂x

)
Ψ1;

ih̄
∂Ψ0

∂ t
=

(
− h̄2

2m
∇

2 +V (𝑟)

)
Ψ0 +(c0n)Ψ0 +

c2√
2

F−Ψ−1

+
c2√

2
F+Ψ1 + h̄

(
γy

∂

∂y
− ih̄x
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∂x

)
Ψ−1

− h̄
(

γy
∂

∂y
+ ih̄x

∂

∂x

)
Ψ1;

ih̄
∂Ψ1

∂ t
=

(
− h̄2

2m
∇

2 +V (𝑟)

)
Ψ1 +(c0n+ c2Fz)Ψ1

+
c2√

2
F−Ψ0− h̄

(
γy

∂

∂y
+ ih̄x

∂

∂x

)
Ψ−1

+ h̄
(

γy
∂

∂y
− ih̄x

∂

∂x

)
Ψ0, (4)

where F± = Fx± iFy.
The momentum distribution of the ground-state phase can

be derived from the Fourier transformation

|Ψj(𝑘)|2 =
∣∣∣∣∫ d𝑟 exp(−i𝑘 ·𝑟)Ψj(𝑟)

∣∣∣∣2 . (5)

The single-particle energy spectrum of isotropic SU(3) spin–
orbit coupled spin-1 BECs in a homogeneous space has three
discrete minima locating on the vertices of an equilateral tri-
angle. The energy band structure means that the system can
have the three-fold-degenerate many-body magnetized states
or topologically nontrivial lattice states.[47,48] The competition
between the spin–spin interaction and the SU(3) SOC results
in the exotic lattice configurations.

In our paper, we introduce a 2D harmonic trap V (𝑟) =

mω2/2(x2 + y2) to simulate the realistic devices of ultracold
atomic experiments. We set γx = γ and γy = ζ γx = ζ γ , where
the coefficient ζ is the SOC strength ratio between γy and γx.
The length (x, y) is normalized by l =

√
h̄/(mω). In this unit,

the units of the SOC (γ) and interaction (c0, c2) are lω and
h̄ωl3/N, respectively. The density–density interaction is fixed
at c0 = 50.

3. Numerical results
We study the ground-state phases of spin-1 BECs in a 2D

harmonic trap with isotropic and anisoropic SU(3) SOCs, re-
spectively. The ground-state phases are obtained by using the
time-splitting Fourier pseudospectral method with the imagi-
nary time propagation (t →−it).[51–55] The wave function in
Eq. (4) can be written as Ψj(𝑟, t) = ∑

n
k=1Ψjk(𝑟)exp(−itEk)

( j =−1,0,1), where Ψjk(𝑟) is the eigenfunction of the eigen-
value Ek. Each eigenfunction is attenuated by exp(−itEk).
For the different eigenfunctions, the eigenvalues Ek are differ-
ent. The ground-state has the lowest energy, the decay rate
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is the slowest. Therefore, after each iteration, the proportion
of the ground-state becomes larger and larger. The returned
wave function evolves to the ground-state wave function, and
its limit is also the ground-state wave function. However, in
the numerical calculation, the imaginary time propagation nei-
ther ensures the normalization nor conserves the spin-density
in spin–orbit coupled spinor BECs. In order to solve this ques-
tion, a backward-forward Euler Fourier-pseudospectral dis-
cretization is implemented to ensure the normalization of the
total density and conservation of the spin-density. For the time
discretization, we use the backward or forward Euler scheme
for linear or nonlinear terms in the time derivatives. For the
spatial discretization, we take fast Fourier transform in spa-
tial derivatives. We adopt three conserved quantities to cal-
culate the normalization constants in this paper. These quan-
tities ensure the normalization of the total density and con-
servation of the spin-density after each iteration in imaginary
time, the continuous normalized gradient flow has been dis-
cussed in Refs. [56,57]. In each iteration, the wave function
in Eq. (4) is transformed as Ψj(𝑟, t +∆t) = d jΨj(𝑟, t), where
d j are the normalization constants. So the constraint on the
total number of atoms can be written as N = Σ jd2

j N j, where
N j = Σ∞

−∞|Ψj|2 d𝑟. We introduce the constraint on the spin-
density as M = Σ∞

−∞(d
2
1 |Ψ1|2− d2

−1|Ψ−1|2)d𝑟. The method is
discussed and used in the study of the spin–orbit coupled spin-
1 and spin-2 BECs.[43,44,58–60] In our numerical simulation, the
initial wave function is the normalized Gaussian wave packet,
i.e., Ψj(𝑟) = (πω2

𝑟)
1/4 exp(−𝑟2/2ω2

𝑟), where ω𝑟 is the width

along the 𝑟 direction. The spatial and time steps employed are
∆𝑟 = 0.05 and ∆t = 0.0001, respectively.

In the SU(3) spin–orbit coupled spin-1 BECs, the com-
petition between the spin–spin interaction and the isotropic
SU(3) SOC plays an important role in determining the ground-
state phases, a rich variety of lattice configurations are present,
i.e., the PW phase, the ST phase, the KL phase, the SHL phase,
and the HHL phase. The system undergoes a sequence of
phase transitions from the RL phase to the HHL phase, and
to the TL phase with anisotrpic SU(3) SOC.

3.1. Stripe and lattice phases with isotropic SU(3) SOC

In this section, we study the ground-state phases of
the ferromagnetic and antiferromagnetic spin-1 BECs with
isotropic SU(3) SOC, respectively. We first consider the ferro-
magnetic spin-1 BECs, i.e., c2 < 0. The ground-state densities
of spin-1 BECs with the different SOC strengths γ = 0, 1, 3,
and 5 are shown in Figs. 1(a)–1(d), respectively. The spin–
spin interaction c2 = −50. The particles favor the mF = 0
component without SOC γ = 0 in Fig. 1(a). With the SOC
strength increasing, the particles begin to prefer the mF =±1
components. As the SOC strength increases further, the den-
sities of the three components are uniformly distributed, i.e.,
|Ψ−1|2 = |Ψ0|2 = |Ψ1|2 = N/3, as shown in Fig. 1(d) with
γ = 5. For the SU(3) spin–orbit coupled ferromagnetic spin-1
BECs, the ground state is a PW phase, and one of the three
minima of the single-particle energy spectrum is occupied.

Ψ↩
 Ψ

 Ψ
 Ψ

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

(a)

(b)

(c)

(d) 5

5

0

0
x

y

-5
-5

Fig. 1. The ground-state density profiles of ferromagnetic spin-1 BECs with isotropic SU(3) SOC. The columns in every panel from left
to right are the densities of the mF = −1 component |Ψ−1|2, the mF = 0 component |Ψ0|2, the mF = 1 component |Ψ1|2, and the total
|Ψ |2 = |Ψ−1|2 + |Ψ0|2 + |Ψ1|2. The SOC strengths in (a)–(d) are γ = 0, 1, 3, and 5, respectively. The spin–spin interaction c2 =−50.
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Figures 2–4 exhibit the ground-state phases of antiferro-
magnetic spin-1 BECs with isotropic SU(3) SOC, the phe-
nomena become interesting. The ground-state phases with the
weak spin–spin interaction (c2 = 100) are shown in Fig. 2. The
system prefers the state that particles locate in the mF = ±1
components evenly, i.e., |Ψ−1|2 = |Ψ1|2 = N/2, one can see
in Fig. 2(a) without the SOC γ = 0. When considering the
SOC, the translational symmetries of each component along
the x-direction and y-direction are broken by the SOC, the
densities of the three components are immiscible. The den-
sity of each component forms a kagome lattice structure[47,48]

in Figs. 2(b)–2(d), we call this ground-state phase as the KL
phase. Due to the presence of the strong SU(3) SOC, the
momentum distribution of the KL phase has three discrete
minima. The three discrete minima are occupied with the
equal weights, as shown in Fig. 5(a). With the SOC strength
increasing, the period of the density modulation decreases.
We next discuss the ground-state phases of the SU(3) spin–
orbit coupled spin-1 BECs with the large spin–spin interac-
tion c2 = 2000, a rich variety of lattice configurations are dis-
played. The translational symmetry of each component is bro-
ken only along one direction with the weak SOC γ = 0.75,
1.10, 1.65, as shown in Figs. 3(b)–3(d). The ground-state
phases consist of alternating spin domains between mF = 0

component and mF = ±1 components, which realizes the ST
phase. The ST phase is consistent with the ground-state phase
of the SU(2) spin–orbit coupled spin-1 BECs. If the SOC
strength is beyond a critical value (γ ' 1.70), the translational
symmetries along both the x-direction and the y-direction are
broken in each component. The double vortices structure in
the total density |Ψ |2 is shown in Fig. 3(e4) with the SOC
strength γ = 1.75. Figures 4(a)–4(e) show the ground-state
phases with the strong SOC strengths γ = 2, 2.5, 3.5, 4, and
4.4, respectively. We can find that the densities of the three
components are miscible. The density of the mF = 0 com-
ponent has the honeycomb lattice structure and the mF = ±1
components have the rectangular lattice structures, as shown
in Fig. 4(a). The total density realizes the honeycomb lattice
with a vortex core structure, which is different from the phases
shown in Fig. 3. As the SOC strength increases further, the
vortex core structure is replaced by the honeycomb hexago-
nal lattice structures in the edge regime of total densities in
Figs. 4(b)–4(d). The honeycomb hexagonal lattice structure
can exist stably when the SOC strength γ = 4.4 in Fig. 4(e), we
take it as the HHL phase. The ground-state phases in Figs. 3(e)
and 4(a)–4(d) are the transition phases between the ST phase
and the HHL phase, we call them as the SHL phases.

Ψ↩
 Ψ

 Ψ
 Ψ

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)
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(b)

(c)

(d) 5

5

0
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x

y

-5
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Fig. 2. The ground-state density profiles of antiferromagnetic spin-1 BECs with isotropic SU(3) SOC. The columns in every panel
from left to right are the densities of the mF =−1 component |Ψ−1|2, the mF = 0 component |Ψ0|2, the mF = 1 component |Ψ1|2, and
the total |Ψ |2 = |Ψ−1|2 + |Ψ0|2 + |Ψ1|2. The SOC strengths in (a)–(d) are γ = 0, 1, 2, and 4, respectively. The spin–spin interaction
c2 = 100.
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Fig. 3. The ground-state density profiles of antiferromagnetic spin-1 BECs with isotropic SU(3) SOC. The columns in every panel from left
to right are the densities of the mF = −1 component |Ψ−1|2, the mF = 0 component |Ψ0|2, the mF = 1 component |Ψ1|2, and the total |Ψ |2 =
|Ψ−1|2 + |Ψ0|2 + |Ψ1|2. The SOC strengths in (a)–(e) are γ = 0.50, 0.75, 1.10, 1.65, and 1.75, respectively. The spin–spin interaction c2 = 2000.
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 Ψ
 Ψ
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Fig. 4. The ground-state density profiles of antiferromagnetic spin-1 BECs with isotropic SU(3) SOC. The columns in every panel from left to right
are the densities of mF = −1 component |Ψ−1|2, mF = 0 component |Ψ0|2, mF = 1 component |Ψ1|2, and the total |Ψ |2 = |Ψ−1|2 + |Ψ0|2 + |Ψ1|2.
The SOC strengths in (a)-(e) are γ = 2, 2.5, 3.5, 4, and 4.4, respectively. The spin–spin interaction c2 = 2000.
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The momentum distributions of each component and the

spin texture are shown in Fig. 5. The parameters of Figs. 5(a)–

5(d) are the same as those of Figs. 2(d), 4(a), 4(b), and 4(e),

respectively. The momentum distributions of each component

of the KL phase (see Fig. 2(d)) show three discrete minima

occupied with the equal weights in Fig. 5(a). When the SOC

strength γ = 2, four discrete minima in the momentum dis-

tributions of each component are shown in the SHL phase

of Fig. 5(b). The three minima of the single-particle energy

spectrum are broken by the interaction and SOC, and the SHL

phase with four discrete minima is a metastable state. As the

SOC strength increases, one of the minima gradually weakens

and eventually disappears. We find that the SHL phase with

four discrete minima is confined to a very small SOC regime

1.95≤ γ ≤ 2.25 in our numerical calculation. The SHL phase

with three discrete minima is shown in Fig. 5(c) with the SOC

strength γ = 2.5. For the HHL phase (see Fig. 4(e)), three dis-

crete minima of the equilateral triangle have unequal weights,

as shown in Fig. 5(d). The spin textures of the KL phase,

the SHL phase, and the HHL phase are shown in Figs. 5(a4),

5(b4), 5(c4), and 5(d4). The spin textures show a spontaneous

magnetic ordering in the form of crystals of the meron pairs

and antimeron pairs with the strong SU(3) SOC strength. Pre-

vious studies indicated that stable meron-pair lattice can be

obtained in two-component BECs in a periodic potential[47]

or with rotation.[61] Our results show that meron-pair lattice

can also be stabilized in alternating spin domains by the SU(3)

SOC of spin-1 BECs.

0-1 1Ψ↩↼k↽
 Ψ↼k↽

 Ψ↼k↽


sz
(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

(a)

(b)

(c)

(d)
4

4

2

2

-2

0

0
x

y

-4
-2-4

2

2
-2

0

0
x

-2

(a4)

(b4)

(c4)

(d4)

Fig. 5. The parameters of (a)–(d) are the same as those of Figs. 2(d), 4(a), 4(b), and 4(e), respectively. The momentum distributions of (b1)–(d1)
the mF =−1 component |Ψ−1(k)|2, (b2)–(d2) the mF = 0 component |Ψ0(k)|2, and (b3)–(d3) the mF = 1 component |Ψ1(k)|2.

The ground-state phase diagram spanned by the SU(3)

SOC strength γ and the spin–spin interaction strength c2 is

shown in Fig. 6. Five ground-state phases can be identified

on this phase diagram, including the PW phase, the KL phase,

the SHL phase, and the HHL phase. The ferromagnetic SU(3)

spin–orbit coupled spin-1 BECs (c2 < 0) only have the PW

phase. The PW phase is also shown in the antiferromagnetic

SU(3) spin–orbit coupled spin-1 BECs (c2 > 0) with the weak

SOC strength γ ≤ 0.7. When the spin–spin interaction strength

is in the regime of 0 < c2 ≤ 600, the system undergoes the

phase transition from the ST phase to the KL phase as the SOC

strength increases. With the spin–spin interaction strength c2

increasing, the KL phase is replaced by the STL and HHL

phases. The system undergoes a sequence of phase transitions

from the ST phase to the STL phase, and to the HHL phase.

From the phase diagram, we can find that both the spin–spin
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interaction and the SU(3) SOC play an important role on the

ground-state phases of the SU(3) spin–orbit coupled spin-1

BECs.

-500 0 500 1000 1500 2000 2500 3000
0

1

2

3γ

4

5

6

HHL phase

ST phase

PW phase
SHL phase

KL phase

c2

Fig. 6. The ground-state phase diagram spanned by the SU(3) SOC
strength γ and the spin–spin interaction strength c2. Five ground-state
phases can be identified on the phase diagram, including the PW phase,
the ST phase, the KL phase, the SHL phase, and the HHL phase.

3.2. Three types of lattice phases with anisotrpic SU(3)
SOC

In order to better investigate the effect of the SU(3) SOC

on the ground-state phases of spin-1 BECs, we study the

ground-state phases of antiferromagnetic spin-1 BECs with

anisoropic SU(3) SOC in a harmonic trap. Figure 6 exhibits

the ground-state phases of anisotrpic SU(3) spin–orbit coupled

spin-1 BECs with the spin–spin interaction c2 = 2000 and the

SOC strength along the x direction γx = 5. The SOC ratios in

Figs. 6(a)–6(c) are ζ = 0.9, 0.99, and 1.1, respectively. Three

types of lattice phases are found, i.e., the RL phase, the HHL

phase, and the TL phase. The translational symmetries of the

total density along both the x-direction and y-direction are bro-

ken. The vortices in the neighboring chains are parallel, which

form a RL phase, as shown in Fig. 6(a) with ζ = 0.90. With

the SOC ratio increasing, the HHL phase is shown. The HHL

phase only can be found in the regime of |ζ−1| ≤ 0.02. which

shows that the HHL structure is the unique solution of ζ = 1

in the numerical calculation. As the SOC ratio increases fur-

ther, the translational symmetries of the total density along

the x-direction and y-direction are also broken, the vortices

of the neighboring chains are stagger. The TL phase is found

in Fig. 6(c) with ζ = 1.1. The translational symmetry is bro-

ken by the SOC ratio, and the system undergoes a sequence of

phase transitions from the RL phase to the HHL phase, and to

the TL phase in spin-1 BECs with anisotrpic SU(3) SOC.

Ψ↩
 Ψ

 Ψ
 Ψ

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(a)

(b)

(c) 5

5

0

0
x

y

-5
-5

Fig. 7. The ground-state density profiles of spin-1 antiferromagnetic BECs with anisotropic SU(3) SOC. The columns in every panel from
left to right are the densities of mF = −1 component |Ψ−1|2, mF = 0 component |Ψ0|2, mF = 1 component |Ψ1|2, and the total |Ψ |2 =
|Ψ−1|2 + |Ψ0|2 + |Ψ1|2. The SOC ratios in (a)–(c) are ζ = 0.90, 0.99 and 1.1, respectively. The spin–spin interaction c2 = 2000 and the SOC
strength along the x direction γx = 5.
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4. Summary
We have investigated the ground-state phases of 2D

isotropic and anisotropic SU(3) spin–orbit coupled spin-1
BECs in a harmonic trap respectively. The competition be-
tween the SU(3) SOC and spin–spin interaction results in a
rich variety of lattice configurations. Five ground-state phases,
i.e., the PW phase, the ST phase, the KL phase, the SHL phase,
and the HHL phase, are identified on the phase diagram with
isotropic SU(3) SOC. The system undergoes a sequence of
phase transitions from the RL phase to the HHL phase, and
to the TL phase in spin-1 BECs with anisotrpic SU(3) SOC.
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[39] Xu Z F, Lü R and You L 2011 Phys. Rev. A 83 053602
[40] Kawakami T, Mizushima T and Machida K 2011 Phys. Rev. A 84

011607
[41] Wang J G, Wang W and Yang S J 2019 Phys. Lett. A 383 566
[42] Wan N S, Li Y E and Xue J K 2019 Phys. Rev. E 99 062220
[43] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 013624
[44] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 063617
[45] Grab T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys.

Rev. B 90 195127
[46] Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
[47] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang

S G 2016 Phys. Rev. A 94 033629
[48] Li H and Chen F L 2019 Chin. Phys. B 28 070302
[49] Yue H X and Liu Y K 2020 Commun. Theor. Phys. 72 025501
[50] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[51] Bao W, Jin S and Markowich P A 2002 J. Comput. Phys. 175 487
[52] Bao W, Jaksch D and Markowich P A 2003 J. Comput. Phys. 187 318
[53] Bao W, Jaksch D and Markowich P A 2004 Multiscale Model. Simul. 2

210
[54] Bao W, Chern I L and Zhang Y Z 2013 J. Comput. Phys. 253 189
[55] Wang H 2007 Int. J. Comput. Math. 84 925
[56] Lim F Y and Bao W 2008 Phys. Rev. E 78 066704
[57] Bao W and Lim F Y 2008 Siam J. Sci. Comp. 30 1925
[58] Gautam S and Adhikari S K 2014 Phys. Rev. A 90 043619
[59] Gautam S and Adhikari S K 2017 Phys. Rev. A 95 013608
[60] Peng P, Li G Q, Yang W L and Yang Z Y 2018 Phys. Lett. A 382 2493
[61] Kasamatsu K, Tsubota M, and Ueda M 2004 Phys. Rev. Lett. 93 250406

100304-8

http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature09887
https://doi.org/10.1038/nphys1954
http://dx.doi.org/10.1103/PhysRevLett.108.235301
http://dx.doi.org/10.1103/PhysRevLett.108.235301
http://dx.doi.org/10.1126/science.aaf6689
http://dx.doi.org/10.1038/nphys3672
http://dx.doi.org/10.1103/PhysRevLett.121.150401
http://dx.doi.org/10.1103/PhysRevLett.105.160403
http://dx.doi.org/10.1088/0256-307X/28/9/097102
http://dx.doi.org/10.1103/PhysRevLett.108.225301
http://dx.doi.org/10.1103/PhysRevA.90.043632
http://dx.doi.org/10.1103/PhysRevA.90.043632
http://dx.doi.org/10.1103/PhysRevLett.111.185303
http://dx.doi.org/10.1103/PhysRevLett.111.185303
http://dx.doi.org/10.1103/PhysRevLett.110.264101
http://dx.doi.org/10.1103/PhysRevA.92.063608
http://dx.doi.org/10.1103/PhysRevA.85.043609
http://dx.doi.org/10.1103/PhysRevA.85.043609
http://dx.doi.org/10.1103/PhysRevA.87.013614
http://dx.doi.org/10.1103/PhysRevE.89.032920
http://dx.doi.org/10.1007/s11467-018-0778-y
http://dx.doi.org/10.1016/j.cnsns.2019.01.031
http://dx.doi.org/10.1103/PhysRevLett.81.742
http://dx.doi.org/10.1103/PhysRevA.61.033607
http://dx.doi.org/10.1103/PhysRevLett.98.160408
http://dx.doi.org/10.1103/PhysRevLett.98.190404
http://dx.doi.org/10.1103/PhysRevLett.98.190404
http://dx.doi.org/10.1103/PhysRevLett.117.125301
http://dx.doi.org/10.1103/PhysRevLett.117.125301
http://dx.doi.org/10.1038/ncomms10897
http://dx.doi.org/10.1038/srep18983
http://dx.doi.org/10.1103/PhysRevA.86.043602
http://dx.doi.org/10.1103/PhysRevA.86.043602
http://dx.doi.org/10.1103/PhysRevA.89.023630
http://dx.doi.org/10.1103/PhysRevA.91.023608
http://dx.doi.org/10.1103/PhysRevA.93.023615
http://dx.doi.org/10.1103/PhysRevA.93.023615
http://dx.doi.org/10.1103/PhysRevA.93.033648
http://dx.doi.org/10.1103/PhysRevA.94.063613
http://dx.doi.org/10.1103/PhysRevA.94.063613
http://dx.doi.org/10.1103/PhysRevA.96.033629
http://dx.doi.org/10.1103/PhysRevA.95.013605
http://dx.doi.org/10.1103/PhysRevA.95.013605
http://dx.doi.org/10.1088/1361-648X/aacc42
http://dx.doi.org/10.1140/epjp/i2018-12331-4
http://dx.doi.org/10.1016/j.physleta.2019.06.006
http://dx.doi.org/10.1016/j.physleta.2019.06.006
http://dx.doi.org/10.1103/PhysRevA.83.053602
http://dx.doi.org/10.1103/PhysRevA.84.011607
http://dx.doi.org/10.1103/PhysRevA.84.011607
http://dx.doi.org/10.1016/j.physleta.2018.11.023
http://dx.doi.org/10.1103/PhysRevE.99.062220
http://dx.doi.org/10.1103/PhysRevA.91.013624
http://dx.doi.org/10.1103/PhysRevA.91.063617
http://dx.doi.org/10.1103/PhysRevB.90.195127
http://dx.doi.org/10.1103/PhysRevB.90.195127
http://dx.doi.org/10.1103/PhysRevLett.109.235308
http://dx.doi.org/10.1103/PhysRevA.94.033629
http://dx.doi.org/10.1088/1674-1056/28/7/070302
http://dx.doi.org/10.1088/1572-9494/ab6907
http://dx.doi.org/10.1016/j.physrep.2012.07.005
http://dx.doi.org/10.1006/jcph.2001.6956
http://dx.doi.org/10.1016/S0021-9991(03)00102-5
http://dx.doi.org/10.1137/030600209
http://dx.doi.org/10.1137/030600209
http://dx.doi.org/10.1016/j.jcp.2013.06.036
http://dx.doi.org/10.1080/00207160701458369
http://dx.doi.org/10.1103/PhysRevE.78.066704
http://dx.doi.org/10.1137/070698488
http://dx.doi.org/10.1103/PhysRevA.90.043619
http://dx.doi.org/10.1103/PhysRevA.95.013608
http://dx.doi.org/10.1016/j.physleta.2018.07.026
http://dx.doi.org/10.1103/PhysRevLett.93.250406

	1. Introduction
	2. Model and Hamiltonian
	3. Numerical results
	3.1. Stripe and lattice phases with isotropic SU(3) SOC
	3.2. Three types of lattice phases with anisotrpic SU(3) SOC

	4. Summary
	References

